Prediction of Land Cover Changes in Evaluation of Regional Spatial Planning in the Keduang Sub-Watershed, Wonogiri Regency


crossmark

Authors

  • Aditya Ramadhan Department of Geography, Faculty of Mathematics and Natural Sciences, University of Indonesia, Depok, West Java, Indonesia
  • Damar Fauzan Bayuhasta Department of Geography, Faculty of Mathematics and Natural Sciences, University of Indonesia, Depok, West Java, Indonesia

DOI:

https://doi.org/10.69606/geography.v2i3.92

Keywords:

CA-Markov Chain, Land use change, region spatial plan, Keduang subwatershed

Abstract

River watersheds have an important function for water absorption for human life. The Pemudang sub-watershed is a national priority because its condition is increasingly critical due to land degradation. This research aims to carry out spatial modeling of land cover changes in 2031 in the Uangng Sub-watershed which will be compared with the 2011-2031 Regional Spatial Plan scenario. The method used uses the Cellular Automata-Markov Chain method. Based on predictions of land cover in 2031, agricultural areas dominate in the Uangng Sub-watershed covering an area of 14,783.4 ha (37.5%). Agricultural area according to the model in 2031 is estimated to increase by 97.5 ha. The difference between the 2031 model area and the region spatial plan is 5,168.9 ha, which means that the region spatial plan settlements are not expected to be able to accommodate future settlements. The forest area in the 2031 model is 12,351.6 ha, while in the region spatial plan it is 12,300.3 ha with an area difference of 51.2 ha. This shows that controlling the use of space in forests is not in accordance with the policies in the region spatial plan.

References

Ahmed, B. G., & Shariff, A. R. M. (2016). Predicting the Vegetation Expansion in Selangor, Malaysia using the NDVI and Cellular Automata Markov Chain. In Proceedings of the World Congress on Civil, Structural, and Environmental Engineering (CSEE’16), p. 1-6. Prague, Czech Republic. https://doi.org/10.11159/icgre16.115

Akbar, F., & Supriatna. (2019). Land Cover Modelling of Pelabuhanratu City in 2032 using Celullar Automata-Markov Chain Method. In IOP Conference Series: Earth and Environmental Science, 311(1), 012071.

Aldiansyah, S., Ningsih, D. S. W., & Saputra, R. A. (2023). Evaluation of Regional Spatial Development on Landslide and Flood Prone with Actual Site Conditions in Kendari City. Jurnal Wilayah dan Lingkungan, 11(1), 92-107. https://doi.org/10.14710/jwl.11.1.92-107

Aldiansyah, S., & Supriatna, S. (2024). Kajian dan prediksi perubahan tutupan lahan menggunakan Cellular Automata-Markov Chain di Kota Unaaha. Geomedia: Majalah Ilmiah dan Informasi Kegeografian, 22(1), 1-13. http://dx.doi.org/10.21831/gm.v22i1.52278

Aldiansyah, S., & Wibowo, A. (2022). Aplikasi Metode Spatial Multi Criteria Analisysis untuk Pengembangan Kawasan Permukiman (Studi Kasus: Re-Evaluasi RTRW Provinsi Sulawesi Tenggara). Jurnal Geografi, Edukasi Dan Lingkungan (JGEL), 6(2), 136–152. https://doi.org/10.22236/jgel.v6i2.7481

Alqurashi, A. F., Kumar, L., & Sinha, P. (2016). Urban land cover change modelling using time-series satellite images: A case study of urban growth in five cities of Saudi Arabia. Remote Sensing, 8(10), 838. https://doi.org/10.3390/rs8100838

Arimjaya, I. W. G. K., Sugandhi, S., Aliyah, N., Aldiansyah, S., & Ristiantri, Y. R. A. (2022). Identifikasi pengembangan kawasan permukiman dengan metode Spatial Multi Criteria Analysis (Studi kasus: Re-evaluasi RTRW Provinsi Kalimantan Tengah). In Seminar Nasional Geomatika VI: Inovasi Geospasial Dalam Pengurangan Risiko Bencana, 735â (Vol. 748).

Asdak, A. (2014). Hidrologi dan Pengelolaan Daerah Aliran Sungai. Yogyakarta: Gadjah Mada University Press.

Asriani, I., Sudarsono, B., & Wahyuddin, Y. (2020). Analisis kesesuaian penggunaan lahan mangrove dan tambak dengan rencana tata ruang wilayah (Studi Kasus: Kab. Pati). Jurnal Geodesi Undip, 10(1), 241-249. https://doi.org/10.14710/jgundip.2021.29708

Badan Pusat Statistik. (2021). Hasil Sensus Penduduk 2021. Retrieved June 21, 2021, from https://cilacapkab.go.id/v3/wp-content/uploads/2019/10/Hasil-Sensus-Penduduk2020.pdf

Ebrahimipour, A., Saadat, M., & Farshchin, A. (2016). Prediction of Urban Growth through Cellular Automata-Markov Chain. Bulletin de la Societe Royale des Sciences de Liege, 85, 824-839.

Gharaibeh, A., Shaamala, A., Obeidat, R., & Al-Kofahi, S. (2020). Improving Land-use Change Modeling by Integrating ANN with Cellular Automata-Markov Chain model. Heliyon, 6(9), 1-18. https://doi.org/10.1016/j.heliyon.2020.e05092.

Ghosh, P., Mukhopadhyay, A., Chanda, A., Mondal, P., Akhand, A., Mukherjee, S., Nayak, S. K., Ghosh, S., Mitra, D., Ghosh, T., & Hazra, S. (2017). Application of Cellular Automata and Markov-Chain Model in Geospatial Environmental Modeling-A review. Remote Sensing Applications: Society and Environment, 5, 64-77 https://doi.org/10.1016/j.rsase.2017.01.005

Hambali, F. R., Sutaryono, S., & Pinuji, S. (2022). Kesesuaian Kawasan Lahan Pertanian Pangan Berkelanjutan dengan Rencana Tata Ruang Wilayah di Kabupaten Sumenep. Tunas Agraria, 4(3), 276–292. https://doi.org/10.31292/jta.v4i3.164

Hasani, M., Salmanmahiny, A., & Tabrizi, A. M. (2020). An Integrative Modelling Approach to Analyse Landscape Dynamics Through Intensity Analysis and Cellular Automata-Markov Chain Model. European Spatial Research and Policy, 27(1), 243-261. https://doi.org/10.18778/1231-1952.27.1.11.

Hastono, F. D., Sudarsono, B., & Sasmito, B. (2012). Identifikasi Daerah Resapan Air dengan Sistem Informasi Geografis (Studi Kasus: Sub DAS Keduang). Jurnal Geodesi Undip, 1(1), 1-9. https://doi.org/10.14710/jgundip.2012.2232

He, Q., He, W., Song, Y., Wu, J., Yin, C., & Mou, Y. (2018). The Impact of Urban Growth Patterns on Urban Vitality in Newly Built-Up Areas Based on An Association Rules Analysis Using Geographical ‘Big Data’. Land Use Policy, 78, 726-738.

Kurniawan, M., & Ramadhan, A. (2024). Spatial and Temporal Variations in Land Surface Temperature as an Indicator of Learning Comfort Level in Banten Province. Journal of Geographical Sciences and Education, 2(2), 42–51. https://doi.org/10.69606/geography.v2i2.98

Kusumastuti, A. C., Kolopaking, L. M., & Barus, B. (2018). Faktor yang Mempengaruhi Alih Fungsi Lahan Pertanian Pangan di Kabupaten Pandeglang. Sodality Jurnal Sosiologi Pedesaan 6(2), 31-36. https://doi.org/10.22500/sodality.v6i2.23234

Lastiantoro, C. Y., & Cahyono, S. A. (2015). Analisis Peran Para Pihak dalam Pengelolaan Daerah Aliran Sungai Bengawan Solo Hulu di Kabupaten Wonogiri, Jawa Tengah. Jurnal Analisis Kebijakan Kehutanan, 12(3), 203-212. https://doi.org/10.20886/jakk.2015.12.3.203-212

Maridi, M., Saputra, A., & Agustina, P. (2015). Kajian Potensi Vegetasi dalam Konservasi Air dan Tanah di Daerah Aliran Sungai (DAS): Studi Kasus di 3 Sub DAS Bengawan Solo (Keduang, Dengkeng, dan Samin). Seminar Nasional Konservasi dan Pemanfaatan Sumber Daya Alam 2015, 1(1), 65-68.

Manakane, S. E., Latue, P. C., Somae, G., & Rakuasa, H. (2023). Prediction of Land Cover Change in Wae Heru Watershed Ambon City Using Celular Automata Markov Chain. Journal of Geographical Sciences and Education, 1(1), 1–11. https://doi.org/10.69606/geography.v1i1.52

Mauliddama, R. E. (2021). Kesesuaian Penggunaan Tanah Terhadap Rencana Tata Ruang Wilayah Kota Palangkaraya dengan Menggunakan Sistem Informasi Geografis (Undergraduate thesis, [Yogyakarta]: Sekolah Tinggi Pertanahan Nasional).

Marhaento, H., Booij, M. J., & Ahmed, N. (2021). Quantifying relative contribution of land use change and climate change to streamflow alteration in the Bengawan Solo River, Indonesia. Hydrological Sciences Journal, 66(6), 1059-1068. https://doi.org/10.1080/02626667.2021.1921182

Marhaento, H., Booij, M. J., Rientjes, T. H., & Hoekstra, A. Y. (2017). Attribution of changes in the water balance of a tropical catchment to land use change using the SWAT model. Hydrological processes, 31(11), 2029-2040. https://doi.org/10.1002/hyp.11167

Mosammam, H. M., Nia, J. T., Khani, H., Teymouri, A., & Kazemi, M. (2017). Monitoring land use change and measuring urban sprawl based on its spatial forms: The case of Qom city. The Egyptian Journal of Remote Sensing and Space Science, 20(1), 103-116. https://doi.org/10.1016/j.ejrs.2016.08.002

Mustafa, A., Ebaid, A., Omrani, H., & McPhearson, T. (2021). A multi-objective Markov Chain Monte Carlo cellular automata model: Simulating multi-density urban expansion in NYC. Computers, Environment and Urban Systems, 87, 101602. https://doi.org/10.1016/j.compen vurbsys.2021.101602.

Mwabumba, M., Yadav, B. K., Rwiza, M. J., Larbi, I., & Twisa, S. (2022). Analysis of land use and land-cover pattern to monitor dynamics of Ngorongoro world heritage site (Tanzania) using hybrid cellular automata-Markov model. Current Research in Environmental Sustainability, 4, 100126. https://doi.org/10.1016/j. crsust.2022.100126.

Nessa, S. M., Tewal, S. T. R., & Nugroho, C. (2021). Kesesuaian Lahan Permukiman Terhadap Rencana Tata Ruang Wilayah Berbasis SIG di Kabupaten Kepulauan Sangihe. GEOGRAPHIA: Jurnal Pendidikan Dan Penelitian Geografi, 2(2), 124-130. https://doi.org/10.53682/gjppg.v2i2.1401

Ningsih, W., & Ramandani, E. F. (2024). Environmental Carrying Capacity Assessment for Crops in Bengawan Solo Watershed, Indonesia: A Spatial Approach. Journal of Sustainability Science and Management, 19(2), 1-14. http://doi.org/10.46754/jssm.2024.02.001

Nugroho, S. P. (2003). Pergeseran Kebijakan dan Paradigma Baru dalam Pengelolaan Daerah Aliran Sungai di Indonesia. Jurnal Teknologi Lingkungan, 4(3), 136-142. https://doi.org/10.29122/jtl.v4i3.283

Ozturk, D. (2017). Modelling Spatial Changes in Coastal Areas of Samsun (Turkey) using A Cellular Automata-Markov Chain Method. Tehnicki Vjesnik-Technical Gazette 24 (Supplement 1), 24, 99-107 https://doi.org/10.17559/TV-20141110125014.

Pratama, A. W. (2023). Implikasi Pembangunan Bendungan Ciawi Pada Perubahan Penggunaan Lahan dan Kesesuaian Lahan Terhadap Rencana Tata Ruang Wilayah . Jurnal Geosains West Science, 1(03), 179–187. https://doi.org/10.58812/jgws.v1i03.724

Pratiwi, S. F., Manessa, M. D. M., & Supriatna, S. (2022). Kajian dan Evaluasi Bencana Tanah Longsor di Kecamatan Tanjungsari terhadap RTRW Kabupaten Bogor. Jurnal Wilayah dan Lingkungan, 10(1), 86-96. https://doi.org/10.14710/jwl.10.1.86-96

Rafiudin, A., Widiatmaka, W., & Munibah, K. (2016). Pola Perubahan Penggunaan Lahan dan Neraca Pangan di Kabupaten Karawang. Jurnal Ilmu Tanah dan Lingkungan, 18(1), 15-20. https://doi.org/10.29244/jitl.18.1.15-20.

Rahnama, M. R. (2021). Forecasting land-use changes in Mashhad Metropolitan area using Cellular Automata and Markov chain model for 2016-2030. Sustainable Cities and Society, 64, 102548. https://doi.org/10.1016/j.scs.2020.102548.

Ramadhan, A., & Kurniawan, M. (2021). Evaluasi Pengembangan Tata Ruang Wilayah Terhadap Bencana Tanah Longsor di Kecamatan Cisarua, Kabupaten Bogor. Jurnal Geografi, Edukasi Dan Lingkungan (JGEL), 5(2), 73–83. https://doi.org/10.22236/jgel.v5i2.7019

Ramadhan, A., & Wibowo, A. (2021). Reclassification of Soil Type Maps for Evaluation of Forest Areas Using SMCA in Bogor Regency. Tunas Geografi, 10(2), 91-98. https://doi.org/10.24114/tgeo.v10i2.29960

Ridwan, F., Ardiansyah, M., & Gandasasmita, K. (2017). Pemodelan Perubahan Penutupan/Penggunaan Lahan dengan Pendekatan Artificial Neural Network dan Logistic Regression (Studi Kasus: Das Citarum, Jawa Barat). Buletin Tanah dan Lahan, 1(1), 30–36.

Rimal, B., Zhang, L., Keshtkar, H., Wang, N., & Lin, Y. (2017). Monitoring and modeling of spatiotemporal urban expansion and land-use/land-cover change using integrated Markov chain cellular automata model. ISPRS International Journal of Geo-Information, 6(9), 288. https://doi.org/10.3390/ijgi6090288

Setiawan, H., Wibowo, A., & Supriatna, S. (2021). Pembuatan peta curah hujan untuk evaluasi kesesuaian rencana tata ruang kawasan hutan Kabupaten Bogor. Geomedia: Majalah Ilmiah dan Informasi Kegeografian, 19(2), 113-121. http://dx.doi.org/10.21831/gm.v19i2.43227

Soerjani, M., Ahmad, R., & Munir, R. (1987). Lingkungan: Sumberdaya Alam dan Kependudukan dalam Pembangunan. Depok: Universitas Indonesia.

Song, W., Yunlin, Z., Zhenggang, X., Guiyan, Y., Tian, H., & Nan, M. (2020). Landscape Pattern and Economic Factors’ Effect on Prediction Accuracy of Cellular Automata-Markov Chain Model on County Scale. Open Geosciences, 12(1), 626-636. https://doi.org/10.1515/geo-2020-0162.

Sugiyono. (2007). Metode Penelitian Kuantitatif Kualitatid dan R & D. Bandung: Alfabeta.

Wang, Q., Wang, H., Chang, R., Zeng, H., & Bai, X. (2022). Dynamic simulation patterns and spatiotemporal analysis of land-use/land-cover changes in the Wuhan metropolitan area, China. Ecological Modelling, 464, 109850. https://doi.org/10.1016/j.ecolmodel.2021.109850.

Wuryanta, A., Pramono, I. B., Chulafak, G. A., & Putra, M. N. R. (2023). The Impact of Land Use Land Cover Change (LULCC) On Runoff Coefficient at Upper Bengawan Solo Watershed, Central Java (Jawa Tengah) Province. In BIO Web of Conferences (Vol. 69, p. 02001). EDP Sciences.

Yudarwati, R. (2016). Perubahan Penggunaan Lahan dan Arahan Pengendaliannya di Kabupaten Bogor dan Cianjur. (Thesis, [Bogor]: Institus Pertanian Bogor).

Yunita, R., Pratiwi, S. F., Pambudi, B. P., & Rakuasa, H. (2022). Evaluasi kesesuaian lahan untuk budidaya perikanan tambak terhadap rencana pola ruang di Kabupaten Barru Provinsi Sulawesi Selatan. Jurnal Geografi: Media Informasi Pengembangan dan Profesi Kegeografian, 19(1), 10-17. https://doi.org/10.15294/jg.v19i1.32201

Downloads

Published

2024-09-02

How to Cite

Ramadhan, A., & Bayuhasta, D. F. (2024). Prediction of Land Cover Changes in Evaluation of Regional Spatial Planning in the Keduang Sub-Watershed, Wonogiri Regency. Journal of Geographical Sciences and Education, 2(3), 82–98. https://doi.org/10.69606/geography.v2i3.92