Analysis of Land Cover Change in Relation to the Urban Heat Island Phenomenon using Remote Sensing and GIS Technology in South Jakarta, Indonesia


crossmark

Authors

  • Ella Whidayanti Department of Geography, Faculty of Mathematics and Natural Sciences, Universitas Indonesia
  • Muhammad Syauqi Labib Department of Geography, Faculty of Mathematics and Natural Sciences, Universitas Indonesia
  • Nabilah Rizki Novani Department of Geography, Faculty of Mathematics and Natural Sciences, Universitas Indonesia
  • Syahla Nuzla Hazani Department of Geography, Faculty of Mathematics and Natural Sciences, Universitas Indonesia
  • Muhammad Akyas Department of Geography, Faculty of Mathematics and Natural Sciences, Universitas Indonesia

DOI:

https://doi.org/10.69606/geography.v3i03.291

Keywords:

urban heat island, land cover, NDVI, NDWI, NDBI, remote sensing

Abstract

The Urban Heat Island (UHI) phenomenon is one of the most significant environmental impacts resulting from land cover changes in urban areas. This study aims to analyze the relationship between land cover change and the UHI phenomenon in South Jakarta through the use of remote sensing and Geographic Information System (GIS) technologies. The data used comprise Landsat-8 OLI/TIRS from 2015 to 2018 to generate NDVI, NDWI, NDBI, Land Cover, and Land Surface Temperature (LST) indices. Pearson correlation test was also conducted to determine the variables that most influence the UHI phenomenon. The land cover changes, particularly the expansion of built-up areas and the reduction of vegetation—directly contribute to an increase in surface temperature. The correlation analysis reveals that NDBI consistently exerts the strongest influence on UHI (0.55), followed by NDWI (0.21) and NDVI (0.18). This research underscores the critical importance of land-use regulation as a strategic approach to mitigating UHI in urban environments.

References

Chander, G., Markham, B. L., & Helder, D. L. (2009). Summary of Current Radiometric Calibration Coefficients for Landsat MSS, TM, ETM+, and EO-1 ALI Sensors. Remote Sensing of Environment, 113(5), 893-903. https://doi.org/10.1016/j.rse.2009.01.007

Chen, F., Chen, X., Van De Voorde, T., Roberts, D. A., Jiang, H., & Xu, W. (2020). Open Water Detection in Urban Environments using High Spatial Resolution Remote Sensing Imagery. Remote Sensing of Environment, 242, 111706. https://doi.org/10.1016/j.rse.2020.111706

Danniswari, D., Honjo, T., & Furuya, K. (2020). Land Cover Change Impacts on Land Surface Temperature in Jakarta and Its Satellite Cities. IOP Conference Series Earth and Environmental Science, 501(1),012031. https://doi.org/10.1088/1755-1315//501/1/012031

Deilami, K., Kamruzzaman, M., & Liu, Y. (2018). Urban Heat Island Effect: A Systematic Review of Spatio-Temporal Factors, Data, Methods, and Mitigation Measures. International Journal of Applied Earth Observation and Geoinformation, 67, 30-42. https://doi.org/10.1016/j.jag.2017.12.009

Department of Forestry. (2005). Pedoman Inventarisasi dan Identifikasi Lahan Kritis. Mangrove Directorate General of Land Realibility and Social Forestry. Jakarta

Eastman, J. R. (1997). IDRISI for Windows: User’s Guide Version 2.0. Worcester, MA: Clark University.

Furusawa, T., Koera, T., Siburian, R., Wicaksono, A., Matsudaira, K., & Ishioka, Y. (2023). Time-Series Analysis of Satellite Imagery for Detecting Vegetation Cover Changes in Indonesia. Scientific Reports, 13(1), 8437. https://doi.org/10.1038/s41598-023-35330-1

Gao, B. C. (1996). NDWI-A Normalized Difference Water Index for Remote Sensing of Vegetation Liquid Water from Space. Remote Sensing of Environment, 58(3), 257-266. https://doi.org/10.1016/S0034-4257(96)00067-3

Imhoff, M. L., Zhang, P., Wolfe, R. E., & Bounoua, L. (2010). Remote Sensing of the Urban Heat Island Effect Across Biomes in the Continental USA. Remote Sensing of Environment, 114(3), 504-513. https://doi.org/10.1016/j.rse.2009.10.008

Ji, L., Zhang, L., & Wylie, B. (2009). Analysis of Dynamic Thresholds for the Normalized Difference Water Index. Photogrammetric Engineering & Remote Sensing, 75(11), 1307-1317. https://doi.org/10.14358/PERS.75.11.1307

Kumar, P., & Corbett, L. J. (2019). Temporal Analysis of Urban Vegetation using NDVI in Rapidly Growing Megacities. Urban Forestry & Urban Greening, 37, 36-45. https://doi.org/10.1016/j.ufug.2018.12.008

Li, Z. L., Tang, B. H., Wu, H., Ren, H., Yan, G., Wan, Z., Trigo, I. F., & Sobrino, J. A. (2013). Satellite-Derived Land Surface Temperature: Current Status and Perspectives. Remote Sensing of Environment, 131, 14-37. https://doi.org/10.1016/j.rse.2012.12.008

Mukaka, M. (2012). Statistics Corner: A Guide to Appropriate use of Correlation Coefficient in Medical Research. Malawi Medical Journal, 24(3), 69-71.

Phiri, D., & Morgenroth, J. (2017). Developments in Landsat Land Cover Classification Methods: A Review. Remote Sensing, 9(9), 967. https://doi.org/10.3390/rs9090967

Rachman, F., Huang, J., Xue, X., Marfai, M. A. (2024). Insights from 30 Years of Land Use/Land Cover Transitions in Jakarta, Indonesia, Via Intensity Analysis. Land, 13(4), 545. https://doi.org/10.3390/land13040545

Rizki, A. R., Tumuyu, S. S., & Rushayati, S. B. (2024). The Impact of Urban Green Space on The Urban Heat Island Phenomenon – A Study Case in East Jakarta, Indonesia. Geoplanning: Journal of Geomatics and Planning, 11(1), 31-42. https://doi.org/10.14710/geoplanning.11.1.31-42

Santamouris, M. (2015). Regulating the Damaged Thermostat of the Cities—Status, Impacts and Mitigation Challenges. Energy and Buildings. 91, 43-556. https://doi.org/10.1016/j.enbuild.2015.01.027

Santecchia, G. S., Revollo Sarmiento, G. N., Genchi, S. A., Vitale, A. J., & Delrieux, C. A. (2023). Assessment of Landsat-8 and Sentinel-2 Water Indices: A Case Study in the Southwest of the Buenos Aires Province (Argentina). Journal of Imaging, 9(9), 186. https://doi.org/10.3390/jimaging9090186

Schwarz, N., Lautenbach, S., & Seppelt, R. (2011). Exploring Indications for Quantifying Surface Urban Heat Islands of European Cities with MODIS Land Surface Temperatures. Remote Sensing of Environment, 115(12), 3175-3186. https://doi.org/10.1016/j.rse.2011.07.003

USGS. (2023). Landsat 8 (OLI) Band Designations. Retrieved from: https://www.usgs.gov/core-science-systems/nli/landsat/landsat-8

Voogt, J. A., & Oke, T. R. (2003). Thermal Remote Sensing of Urban Climates. Remote Sensing of Environment, 86(3), 370-384. https://doi.org/10.1016/S0034-4257(03)00079-8

Wati, T., & Fatkhuroyan. (2017). Analisis Tingkat Kenyamanan di DKI Jakarta berdasarkan Indeks THI (Temperature Humidity Index). Jurnal Ilmu Lingkungan, 15(1). 57-63. https://doi.org/10.14710/jil.15.1.57-63

Weng, Q. (2001). A Remote Sensing-GIS Evaluation of Urban Expansion and Its Impact on Surface Temperature in the Zhujiang Delta, China. International Journal of Remote Sensing, 22(10), 1999-2014. https://doi.org/10.1080/713860788

Weng, Q., Lu, D., & Schubring, J. (2004). Estimation of Land Surface Temperature-Vegetation Abundance Relationship for Urban Heat Island Studies. Remote Sensing of Environment, 89(4), 467-483. https://doi.org/10.1016/j.rse.2003.11.005

Whidayanti, E., Handayanti, T., Supriatna., & Manessa, M. (2021). A Spatial Study of Mangrove Ecosystems for Abrasion Prevention using Remote Sensing Technology in the Coastal Area of Pandeglang Regency. IOP Conference Series: Earth and Environmental Sciences, 771(1), 012014. https://doi.org/10.1088/1755-1315/771/1/012014

Winarso, H., Hudalah, D., & Firman, T. (2015). Peri-Urban Transformation in the Jakarta Metropolitan Area. Habitat International, 49, 221-229. https://doi.org/10.1016/j.habitatint.2015.06.008

Wu, C., Li, J., Wang, C., Song, C., Chen, Y., Finka, M., & Rosa, D. L. (2019). Understanding the Relationship between Urban Blue Infrastructure and Land Surface Temperature. Science of the Total Environment. 694, 133742. https://doi.org/10.1016/j.scitotenv.2019.133742

Zha, Y., Gao, J., & Ni, S. (2003). Use of Normalized Difference Built-Up Index in Automatically Mapping Urban Areas from TM Imagery. International Journal of Remote Sensing, 24(3), 583-594. https://doi.org/10.1080/01431160304987

Zhou, D., Zhao, S., Liu, S., Zhang, L., & Zhu, C. (2014). Surface Urban Heat Island in China’s 32 Major Cities: Spatial Patterns and Drivers. Remote Sensing of Environment. 152, 51-61. https://doi.org/10.1016/j.rse.2014.05.017

Zhou, D., Zhang, L., Li, D., Huang, D., & Zhu, C. (2016). Climate-Vegetation Control on the Diurnal and Seasonal Variations of Surface Urban Heat Islands in China. Environmental Research Letters, 11(7), 074009. https://doi.org/10.1088/1748-9326/11/7/074009

Downloads

Published

2025-09-01

How to Cite

Whidayanti, E., Labib, M. S., Novani, N. R., Hazani, S. N., & Akyas, M. (2025). Analysis of Land Cover Change in Relation to the Urban Heat Island Phenomenon using Remote Sensing and GIS Technology in South Jakarta, Indonesia. Journal of Geographical Sciences and Education, 3(03), 155–170. https://doi.org/10.69606/geography.v3i03.291