Spatial Modeling of Flood Prone Areas in Huamual Sub-district Seram Bagian Barat Regency Indonesia


crossmark

Authors

  • Heinrich Rakuasa Department of Geography, National Research Tomsk State University, Russian Federation

DOI:

https://doi.org/10.69606/geography.v1i2.70

Keywords:

flood, GIS, Hunimual, MCA, spatial modeling

Abstract

Modeling of flood-prone areas is needed to provide information as an initial step in future flood disaster mitigation efforts. This research aims to spatially analyze the level of flood vulnerability and affected settlements in the Hunimual Sub-district. The method used is Multi-Criteria Analysis (MCA) by weighting the value of each variable. The variables that influence flooding in this study consist of land elevation, slope, land cover, distance from the river, geology, and rainfall. The determination of weights and scores in this study is an expert judgment. The weighting results are then overlaid to obtain a flood vulnerability map. The results show that the level of flood vulnerability is dominated by the very low vulnerability level of 69.09%, low vulnerability of 22.50%, and high vulnerability of 8.41% of the total area of the research location. The area of settlements affected by flooding is 556.47 ha. The results of this study are expected to be used as a basis for future flood disaster mitigation efforts to minimize losses, both casualties and physical damage in Hunimual District

References

Abass, K., Dumedah, G., Frempong, F., Muntaka, A. S., Appiah, D. O., Garsonu, E. K., & Gyasi, R. M. (2022). Rising Incidence and Risks of Floods in Urban Ghana: Is Climate Change to Blame?. Cities 121: 103495. https://www.sciencedirect.com/science/article/pii/S0264275121003942.

Aziza, S.N., Somantri, L., & Setiawan, I. (2021). Analisis Pemetaan Tingkat Rawan Banjir di Kecamatan Bontang Barat Kota Bontang Berbasis Sistem Informasi Geografis. Jurnal Pendidikan Geografi Undiksha 9(2): 109–20.

Bajracharya, S. R., Khanal, N. R., Nepal, P., Rai, S. K., Ghimire, P. K., & Pradhan, N. S. (2021). Community Assessment of Flood Risks and Early Warning System in Ratu Watershed, Koshi Basin, Nepal. Sustainability 13(6), 3577. https://doi.org/10.3390/su13063577

BNPB. (2021). IRBI (Indeks Resiko Bencana Indonesia) Tahun 2021. Direktorat Pengurangan Risiko Bencana, BNPB: 115. https://www.bnpb.go.id//uploads/renas/1/BUKU RENAS PB.pdf.

BNPB. (2023). Banjir Di Kab. Seram Bagian Barat (SBB), Prov. Maluku.” BNPB: 1. Retrieved from https://pusdalops.bnpb.go. id/2023/07/14/infografis090723-banjir-di-kab-seram-bagian-barat-sbb-prov-maluku/ (July 17, 2023).

Cabrera, J. S., & Lee, H. S. (2020). Flood Risk Assessment for Davao Oriental in The Philippines Using Geographic Information System‐based Multi‐criteria Analysis and the Maximum Entropy Model. Journal of Flood Risk Management 13(2), e12607 https://doi.org/10.1111/jfr3.12607

Chen, Y., Liu, T., Ge, Y., Xia, S., Yuan, Y., Li, W., & Xu, H. (2021). Examining Social Vulnerability to Flood of Affordable Housing Communities in Nanjing, China: Building Long-Term Disaster Resilience of Low-Income Communities. Sustainable Cities and Society 71, 102939. https://doi.org/10.1016/j.scs.2021.102939

Gibson, S., & Shelley, J. (2020). Flood Disturbance, Recovery, and Inter-Flood Incision on a Large Sand-Bed River. Geomorphology 351, 106973. https://doi.org/10.1016/j.geomorph.2019.106973.

Haryani, N. S., Zubaidah, A., Dirgahayu, D., Yulianto, H. F., & Pasaribu, J. (2012). Model Bahaya Banjir Menggunakan Data Penginderaan Jauh di Kabupaten Sampang. Jurnal Penginderaan Jauh dan Pengolahan Data Citra Digital, 9(1).

Rakuasa, H., Sihasale, D. A., Mehdila, M. C., & Wlary, A. P. (2022). Analisis Spasial Tingkat Kerawanan Banjir di Kecamatan Teluk Ambon Baguala, Kota Ambon. Jurnal Geosains dan Remote Sensing, 3(2), 60-69. https://doi.org/10.23960/jgrs.2022.v3i2.80

Idfi, G., Setyawan, E., Suwarno, E., & Al Ansyorie, M. M. (2023). Perbandingan Model Unsteady dan Steady Flow Aliran Banjir Sungai Way Laala Sebagai Dasar Solusi Penanganan Pasca Bencana. Bangunan, 28(1), 1–12.

Islam, R., Kamaruddin, R., Ahmad, S. A., Jan, S., & Anuar, A. R. (2016). A Review on Mechanism of Flood Disaster Management in Asia. International Review of Management and Marketing, 6(1), 29-52. https://www.proquest.com/scholarly-journals/review-on-mechanism-flood-disaster-management/docview/1762628141/se-2.

Klipper, I. G., Zipf, A., & Lautenbach, S. (2021). Flood Impact Assessment on Road Network and healthcare Access at The Example of Jakarta, Indonesia. AGILE: GIScience Series, 2, 1–11. https://agile-giss.copernicus.org/articles/2/4/2021/.

Kusumo, P., & Nursari, E. (2016). Zonasi Tingkat Kerawanan Banjir Dengan Sistem Informasi Geografis Pada DAS Cidurian Kab. Serang, Banten. STRING (Satuan Tulisan Riset dan Inovasi Teknologi), 1(1): 29–38.

Latue, P. C., & Rakuasa, H. (2023). Identification of Flood-Prone Areas using the Topographic Wetness Index Method in Fena Leisela District, Buru Regency. Journal Basic Science and Technology, 12(2), 20-24.

Latue, P. C., Imanuel Septory, J. S., Somae, G., & Rakuasa, H. (2023). Pemodelan Daerah Rawan Banjir di Kecamatan Sirimau Menggunakan Metode Multi-Criteria Analysis (MCA). Jurnal Perencanaan Wilayah dan Kota, 18(1), 10–17.

Letedara, R., Rakuasa, H., & Latue, P. C. (2023). 2023. Cellular Automata Markov Chain Application for Prediction of Land Cover Changes in The Wae Batu Gantung Watershed, Ambon City, Indonesia. Journal of Multidisciplinary Science, 2(2), 113-122.

Lianxiao, & Morimoto, T. (2019). Spatial Analysis of Social Vulnerability to Floods Based on the MOVE Framework and Information Entropy Method: Case Study of Katsushika Ward, Tokyo. Sustainability, 11(2), 529. https://doi.org/10.3390/su11020529

Marasabessy, M., Pallu, M. S., Lopa, R. T., & Thaha, M. A. (2020). Development of flood forecasting model and warning systems at Way Ruhu–Ambon. In IOP Conference Series: Earth and Environmental Science 419(1): 12115. http://dx.doi.org/10.1088/1755-1315/419/1/012115.

Monger, F., V Spracklen, D., J Kirkby, M., & Schofield, L. (2022). The Impact of Semi‐Natural Broadleaf Woodland and Pasture on Soil Properties and Flood Discharge. Hydrological Processes, 36(1), e14453. https://doi.org/10.1002/hyp.14453

Motta, M., de Castro Neto, M., & Sarmento, P. (2021). A Mixed Approach for Urban Flood Prediction using Machine Learning and GIS. International Journal of Disaster Risk Reduction, 56, 102154. https://doi.org/10.1016/j.ijdrr.2021.102154

Muin, A., & Rakuasa, H. (2023a). Pemetaan Daerah Rawan Banjir di Desa Lokki Kecamatan Huamual Kabupaten Seram Bagian Barat. Gudang Jurnal Multidisiplin Ilmu 1(2), 47–52.

Muin, A., & Rakuasa, H. (2023b). Evaluasi Rencana Tata Ruang Wilayah Kota Ambon Berdasarkan Aspek Kerawanan Banjir. ULIL ALBAB: Jurnal Ilmiah Multidisiplin, 2(5), 1727-1738.

Muin, A., & Rakuasa, H. (2023c). Pemanfaat Geographic Artificial Intelligence (Geo-AI) untuk Identifikasi Daerah Rawan Banjir di Kota Ambon. Gudang Jurnal Multidisiplin Ilmu, 1(2), 58-63.

Tambunan, M. P., Pin, T. G., Permana, B., Zikrullah, A., & Maulana, A. (2016, November). Spatial and Temporal Pattern of Flood Area in Cisadane Watershed, Banten Province. In 1st International Conference on Geography and Education (ICGE 2016) (pp. 70-75). Atlantis Press. http://www.atlantis-press.com/php/paper-details.php?id=25875175.

Tambunan, M. P. (2018). Characteristic of rainfall in the flood period in DKI Jakarta in 1996, 2002, and 2007. In MATEC Web of Conferences (Vol. 229). EDP Sciences. https://www.matec-conferences.org/10.1051/matecconf/201822902012.

Piadeh, F., Behzadian, K., & Alani, A. M. (2022). A Critical Review of Real-Time Modelling of Flood Forecasting in Urban Drainage Systems. Journal of Hydrology 607: 127476. https://doi.org/10.1016/j.jhydrol.2022.127476

Ponting, J., Kelly, T. J., Verhoef, A., Watts, M. J., & Sizmur, T. (2021). The Impact of Increased Flooding Occurrence on The Mobility of Potentially Toxic Elements in Floodplain Soil – A Review. Science of The Total Environment 754, 142040. https://doi.org/10.1016/j.scitotenv.2020.142040

Rakuasa, H., & Rinaldi, M. (2023). Pemetaan Daerah Potensi Genangan Banjir di Kecamatan Gunugputri, Kabupaten Bogor Menggunakan Data DEMNAS dengan Metode Topographic Wetness Index. ULIL ALBAB: Jurnal Ilmiah Multidisiplin, 2(6), 2269-2280.

Rakuasa, H., Helwend, J. K., & Sihasale, D. A. (2022). Pemetaan Daerah Rawan Banjir Di Kota Ambon Menggunakan Sistim Informasi Geografis. Jurnal Geografi: Media Informasi Pengembangan dan Profesi Kegeografian 19(2), 73–82. https://doi.org/10.15294/jg.v19i2.34240

Rakuasa, H., Somae, G., & Latue, P. C. (2023). Pemetaan Daerah Rawan Banjir di Desa Batumerah Kecamatan Sirimau Kota Ambon Menggunakan Sistim Informasi Geografis. ULIL ALBAB: Jurnal Ilmiah Multidisiplin, 2(4), 1642–53.

Rakuasa, H., Wahab, W. A., Kamiludin, K., Jaelani, A., Ramdhani, R., & Rinaldi, M. (2023). Pemetaan Genangan Banjir di Jalan TB. Simatupang, Jakarta Selatan Oleh Unit Pengelola, Penyelidikan, Pengukuran Dan Pengujian (UP4) Dinas Sumber Daya Air DKI Jakarta. Jurnal Altifani Penelitian dan Pengabdian kepada Masyarakat, 3(2), 288–95.

Rakuasa, H., & Latue, P. C. (2023). Analisis Spasial Daerah Rawan Banjir di Das Wae Heru, Kota Ambon. Jurnal Tanah dan Sumberdaya Lahan, 10(1), 75–82. https://jtsl.ub.ac.id/index.php/jtsl/article/view/845.

Rokaya, P., Lindenschmidt, K. E., Pietroniro, A., & Clark, M. (2022). Modelling of Ice Jam Floods Under Past and Future Climates: A Review. Journal of Hydrology X, 15, 100120. https://doi.org/10.1016/j.hydroa.2022.100120

Sugandhi, N., & Rakuasa, H. (2023). Utilization of Geogle Earth Engine for Flood Hazard Analysis in DKI Jakarta Province. Jurnal Riset Multidisiplin dan Inovasi Teknologi, 1(2), 40–49.

Sugandhi, N., Rakuasa, H., Zainudin, Z., Abdul Wahab, W., Kamiludin, K., Jaelani, A., Ramdhani, R., & Rinaldi, M. (2023). Pemodelan Spasial Limpasan Genangan Banjir Dari DAS Ciliwung di Kel. Kebon Baru dan Kel. Bidara Cina DKI Jakarta. ULIL ALBAB : Jurnal Ilmiah Multidisiplin, 2(5), 1685–1692.

Taufik, S. R., Yatrib, M., Harman, A. N., Kesuma, T. N. A., Saputra, D., & Kusuma, M. S. B. (2022, February). Assasment of flood hazard reduction in DKI Jakarta: Bendungan Hilir Village. IOP Conference Series: Earth and Environmental Science 989(1), 012018. https://iopscience.iop.org/article/10.1088/1755-1315/989/1/012018.

Waqas, H., Lu, L., Tariq, A., Li, Q., Baqa, M. F., Xing, J., & Sajjad, A. (2021). Flash Flood Susceptibility Assessment and Zonation Using an Integrating Analytic Hierarchy Process and Frequency Ratio Model for the Chitral District, Khyber Pakhtunkhwa, Pakistan. Water, 13(12), 1650. https://doi.org/10.3390/w13121650

Yodsuban, P., & Nuntaboot, K. (2021). Community-Based Flood Disaster Management for Older Adults in Southern of Thailand: A Qualitative Study. International Journal Of Nursing Sciences, 8(4), 409-417. https://doi.org/10.1016/j.ijnss.2021.08.008

Downloads

Published

2023-12-01

How to Cite

Rakuasa, H. (2023). Spatial Modeling of Flood Prone Areas in Huamual Sub-district Seram Bagian Barat Regency Indonesia. Journal of Geographical Sciences and Education, 1(2), 47–57. https://doi.org/10.69606/geography.v1i2.70