Inferences on the Geological History Through Soil Minerology, Palakkad Gap Region, South India
DOI:
https://doi.org/10.69606/geography.v3i03.311Keywords:
soil mineralogy, X-ray diffraction, Palakkad gapAbstract
This study assess soil mineralogy and prevailing weathering conditions within the Palakkad Gap, 22 surface soil samples (0–25 cm depth) were collected based on geology, geomorphology, lineament patterns, and land use. Samples were analyzed using X-ray diffraction (XRD; model 600) to determine mineralogical composition (Moore & Reynolds, 1997). The diffraction patterns indicated the presence of quartz, feldspar, kaolinite–illite, gibbsite, goethite, mica, chlorite, calcite, and vermiculite. Quartz and feldspar were interpreted as lithogenic minerals derived from the parent rock, whereas kaolinite, gibbsite, and goethite represent pedogenic weathering products formed under variable pH regimes. Thin-section petrography revealed altered feldspar margins and fractures infilled with Fe-oxides, indicating early to moderate stages of chemical weathering. Mineralogical assemblages in the Palakkad Gap reflect the combined effects of lithology, climate, and geomorphic processes on soil and landscape evolution (Ollier & Pain, 1996; Birkeland, 1999).
References
Aleva, G. J. (1983). On Weathering and Denudation of Humid Tropical Interfluves and Their Triple Planation Surfaces. Geologie en Mijnbouw, 62(3), 383-388.
Balasubramaniam, K.S., & Sabale, S.G. (1984). Mineralogy, Geochemistry, and Genesis of Certain Bauxite Profiles from Kutch District, Gujarat. Proceedings of Symposium on Deccan Trap and Bauxite. Special Publication. Geological Survey of India, 14, 225–242.
Barshad, I. (1966, June). The Effect of a Variation in Precipitation on The Nature of Clay Mineral Formation in Soils from Acid and Basic Igneous Rocks. In Proceedings of The International Clay Conference, 2, 167-173. Israel Programme of Scientific Translation Jerusalem.
Bates, T. F. (1971). The Kaolin Minerals. In J. A. Gard (Ed.), Mineralogical Society Monograph (Vol. 3). Oxford: Aldren & Macaulay Ltd.
Bétard, F., Caner, L., Gunnell, Y. & Bourgeon, G. (2009) Illite Neoformation in Plagioclase During Weathering: Evidence from Semi-Arid Northeast Brazil. Geoderma 152, 53–62, https://doi.org/10.1016/j.geoderma.2009.05.016.
Bhattacharyya, R., Prakash, V., Kundu, S., Srivastva, A. K., & Gupta, H. S. (2009). Soil Aggregation and Organic Matter in A Sandy Clay Loam Soil of The Indian Himalayas Under Different Tillage and Crop Regimes. Agriculture, Ecosystems & Environment, 132(1-2), 126-134. https://doi.org/10.1016/j.agee.2009.03.007
Bhattacharyya, T., Pal, D. K., & Srivastava, P. (2000). Formation of Gibbsite in The Presence Of 2: 1 Minerals: An Example from Ultisols of Northeast India. Clay Minerals, 35(5), 827-840.
Birkeland, P. W. (1999). Soils and Geomorphology (3rd ed.). New York: Oxford University Press.
Brady, N. C., & Weil, R. R. (2008). The Nature and Properties of Soils (14th ed.). Pearson Prentice Hall.
Chamley, H. (1989). Clay Sedimentology. Berlin: Springer-Verlag.
Chandran, P., Ray, S. K., Bhattacharyya, T., Krishnan, P., & Pal, D. K. (2000). Clay Minerals in Two Ferruginous Soils of Southern India. Clay Research 19, 77–85.
Chandran, P., Ray, S. V., Bhattacharyya, T., Srivastava, P., Krishnan, P., & Pal, D. K. (2005). Lateritic Soils of Kerala, India: Their Mineralogy, Genesis, and Taxonomy. Soil Research, 43(7), 839-852. https://doi.org/10.1071/SR04128
Chattopadhyay S., & Chattopadhyay M. (1994). Terrain Analysis of Kerala, Concept, Method and Application. State Committee on Science, Technology and Environment, Government of Kerala.
Chipera, S. J., & Bish, D. L. (2013). Fitting Full X-ray Diffraction Patterns for Quantitative Analysis: A Method for Readily Quantifying Crystalline and Disordered Phases. Advances in Materials Physics and Chemistry, 3, 47-53 http://dx.doi.org/10.4236/ampc.2013.31A007
Collins, A. S., Clark, C., Sajeev, K., Santosh, M., Kelsey, D. E., & Hand, M. (2007). Passage Through India: The Mozambique Ocean Suture, High‐Pressure Granulites And the Palghat‐Cauvery Shear Zone System. Terra Nova, 19(2), 141-147. https://doi.org/10.1111/j.1365-3121.2007.00729.x
Cornell, R. M., & Schwertmann, U. (2003). The Iron Oxides: Structure, Properties, Reactions, Occurrences, and Uses (2nd ed.). Weinheim: Wiley-vch.
Corwin, D. L. (2021). Climate Change Impacts on Soil Salinity in Agricultural Areas. European Journal of Soil Science, 72(2), 842-862. https://doi.org/10.1111/ejss.13010
D’Cruz, E., Nair, P. K. R., & Prasannakumar, V. (2000) Palghat Gap—A Dextral Shear Zone from the South Indian Granulite Terrain. Gondwana Research, 3(1), 21–31. https://doi.org/10.1016/S1342-937X(05)70054-X
Deepthy, R., & Balakrishnan, S. (2005). Climatic Control on Clay Mineral Formation: Evidence from Weathering Profiles Developed on Either Side of The Western Ghats. Journal of Earth System Science, 114, 545-556. https://doi.org/10.1007/BF02702030
Dixon, J. B., & Schulze, D. G. (Eds.). (2002). Soil Mineralogy with Environmental Applications. Madison, WI: Soil Science Society of America.
Fernández-Caliani, J. C., Galán, E., Aparicio, P., Miras, A. & Márquez, M. G. (2010) Origin and Geochemical Evolution of the Nuevo Montecastelo Kaolin Deposit (Galicia, NW Spain). Applied Clay Science, 49(3), 91-97. https://doi.org/10.1016/j.clay.2010.06.006.
Gadgil, S. (2003). The Indian Monsoon and Its Variability. Annual Review of Earth and Planetary Sciences, 31(1), 429–467. https://doi.org/10.1146/annurev.earth.31.100901.141251
Ganguli, S. S., Pal, S. K., Singh, S. L., Rama Rao, J. V., & Balakrishna, B. (2021). Insights into Crustal Architecture and Tectonics Across Palghat Cauvery Shear Zone, India from Combined Analysis of Gravity and Magnetic Data. Geological Journal, 56(4), 2041-2059. https://doi.org/10.1002/gj.4041
Geiss, C. E., Egli, R., & Zanner, C. W. (2008). Direct Estimates of Pedogenic Magnetite as A Tool to Reconstruct Past Climates from Buried Soils. Journal of Geophysical Research: Solid Earth, 113(B11). https://doi.org/10.1029/2008JB005669
Graham, R. C., Tice, K. R., & Guertal, W. R. (1994). The Pedologic Nature of Weathered Rock. Whole Regolith Pedology, 34, 21-40. https://doi.org/10.2136/sssaspecpub34.c2
Hack, H. R. G. (2019). Weathering, Erosion, and Susceptibility to Weathering. In M. Kanji, E. A. B. Ferreira, & R. F. Azzoni (Eds.), Soft Rock Mechanics and Engineering (pp. 291–333). Springer International Publishing.
Hamed, H., Hale, W., & Stern, B. (2021). X-RAY Diffraction to Determine the Mineralogy in Soil Samples in the UK. International Journal of Engineering Applied Sciences and Technology, 5(10), 91-98.
Hammond, E. H. (1964). Classes of Land Surface Form in the Forty-Eight States of the U.S.A. [Map supplement No. 4]. Annals of the Association of American Geographers, 54(2), 11–19.
Harindranath, C. S., Venugopal, K. R., Raghu Mohan, N. G., Sehgal, J., & Velayutham, M. V. (1999). Soils of Goa for Optimising Land Use (NBSS Publ. 74b, Soils of India Series). National Bureau of Soil Survey and Land Use Planning, Nagpur, India.
Hemming, S. R. (2007). Paleoceanography, Physical and Chemical Proxies: Terrigenous Sediments. In S. A. Elias (Ed.), Encyclopedia of Quaternary Science (Vol. 3, pp. 1776–1785). Elsevier.
India Meteorological Department [IMD]. (2021, January 4). Statement on Climate of India during 2020 [Press release]. Ministry of Earth Sciences, Government of India.
Jolicoeur, S., Ildefonse, P., & Bouchard, M. (2000). Kaolinite and Gibbsite Weathering of Biotite within Saprolites and Soils of Central Virginia. Soil Science Society of America Journal, 64(3), 1118-1129. https://doi.org/10.2136/sssaj2000.6431118x
Kahle, M., Kleber, M., & Jahn, R. (2002). Review of XRD-based Quantitative Analyses of Clay Minerals in Soils: the Suitability of Mineral Intensity Factors. Geoderma, 109(3-4), 191-205. https://doi.org/10.1016/S0016-7061(02)00175-1
Karathanasis A. D., Johnson D. M. C & Matocha C. J. (2005). Biosolid Colloid-Mediated Transport of Copper, Zinc, and Lead in Waste Amended Soils. Journal of Environmental Quality, 34(4), 1153-1164. https://doi.org/10.2134/jeq2004.0403
Kemp, R. A. (1985). The cause of redness in some buried and non-buried soils in eastern England. Journal of Soil Science, 36(3), 329-334. https://doi.org/10.1111/j.1365-2389.1985.tb00339.x
Kharche, V. K. (1996). Developing Soil-Site Suitability Criteria for Some Tropical Plantation Crops (Doctoral dissertation, [Akola, Maharashtra, India]: Dr. Panjabrao Deshmukh Krishi Vidyapeeth).
Lal, R. (2008). Carbon Sequestration. Philosophical Transactions of the Royal Society B: Biological Sciences, 363(1492), 815-830. https://doi.org/10.1098/rstb.2007.2185.
Liu, H., Chen, T., & Frost, R. L. (2014). An Overview of The Role of Goethite Surfaces in The Environment. Chemosphere, 103, 1-11. https://doi.org/10.1016/j.chemosphere.2013.11.065
Liu, Z. H. & Dreybrodt, W. (1997). Dissolution Kinetics of Calcium Carbonate Minerals in H2O-O2 Solutions in Turbulent Flow: The Role of The Diffusion Boundary Layer and The Slow Reaction H2O+ CO2→ H++ HCO3-. Geochimica et Cosmochimica acta, 61(14), 2879-2889. https://doi.org/10.1016/S0016-7037(97)00143-9.
Moore, I. D., & Reynolds, J. F. (1997). An Introduction to Terrain Analysis. Chichester: Wiley.
Mukherjee, S. (2022). Soil Minerology. In Current Topics in Soil Science: An Environmental Approach (pp. 11-18). Cham: Springer International Publishing.
Natarajan, A., Reddy, P. S. A., Sehgal, J., & Velayutham, M. (1997). Soil Resources of Tamil Nadu for Land Use Planning (NBSS Publ. 46b, Soils of India Series, 88 pp. + 4 Sheets of Soil Map at 1:500,000 Scale). National Bureau of Soil Survey and Land Use Planning.
Ogg, C. M., & Baker, J. C. (1999). Pedogenesis and Origin of Deeply Weathered Soils Formed in Alluvial Fans of The Virginia Blue Ridge. Soil Science Society of America Journal, 63(3), 601-606.
Ollier, C., & Pain, C. (1996). Regolith, Soils and Landforms. Chichester: Wiley.
Pal, D. K., Wani, S. P., Sahrawat, K. L., & Srivastava, P. (2014). Red Ferruginous Soils of Tropical Indian Environments: A Review of The Pedogenic Processes and Its Implications for Edaphology. Catena, 121, 260-278. https://doi.org/10.1016/j.catena.2014.05.023
Peucat, J. J., Vidal, P., Bernard-Griffiths, J., & Condie, K. C. (1989). Sr, Nd, and Pb Isotopic Systematics in the Archean Low- to High-Grade Transition Zone of Southern India: Syn-Accretion vs. Post-Accretion Granulites. The Journal of Geology, 97(5), 537-549. https://doi.org/10.1086/629333
Pike, R. J., & Wilson, S. E. (1971). Elevation Relief Ratio, Hypsometric Integral, and Geomorphic Area Altitude Analysis. Bulletin of the Geological Society of America, 82(4), 1079–1084. https://doi.org/10.1130/0016-7606(1971)82[1079:ERHIAG]2.0.CO;2
Pisharoty, P. R., & Asnani, G. C. (1957). Rainfall around monsoon depressions over India. Indian Journal of Meteorology and Geophysics, 8(1), 15–20. https://doi.org/10.54302/mausam.v8i1.4987.
Potter, M. J. (2000). Vermiculite. In U.S. Geological Survey Minerals Yearbook (pp. 83.81–83.82). U.S. Geological Survey.
Ravindrakumar, G.R. & Chacko,T (1994) Geothermobarometry of Mafic Granulites and Metapelite from The Palghat Gap, South India: Petrological Evidence for Isothermal Uplift and Rapid Cooling. Journal of Metamorphic Geology, 12(4), 479-492. https://doi.org/10.1111/j.1525-1314.1994.tb00037.x
Richards, L. A. (1954). Diagnosis and Improvement of Saline and Alkali Soils (U.S. Department of Agriculture Agricultural Handbook No. 60, 160 pp.). Washington, DC: U.S. Department of Agriculture.
Rothacker, L., Dosseto, A., Francke, A., Chivas, A. R., Vigier, N., & Kotarba-Morley, A. M., & Menozzi, D. (2018). Impact of Climate Change and Human Activity on Soil Landscapes Over The Past 12,300 Years. Scientific Reports, 8(1), 247. https://doi.org/10.1038/s41598-017-18603-4
Santosh, M., Tsunogae, T., & Koshimoto, S. (2004). First Report of Sapphirine-Bearing Rocks from the Palghat-Cauvery Shear Zone System, Southern India. Gondwana Research, 7(2), 620-626. https://doi.org/10.1016/S1342-937X(05)70813-3
Sehgal, J. L. (1998). Red and Lateritic Soils: An overview. In J. Sehgal, W. E. Blum, & K. S. Gajbhiye (Eds.), Red and Lateritic Soils: Managing Red and Lateritic Soils for Sustainable Agriculture (Vol. 1, pp. 3–10). Oxford & IBH Publishing, New Delhi.
Shiva Prasad, C. R., Reddy, P. S. A., Sehgal, J., & Velayutham, M. (1998). Soils of Karnataka for Optimising Land Use (NBSS Publ. 47b, Soils of India Series, 111 pp. + 4 Sheets of Soil Map at 1:500,000 Scale). National Bureau of Soil Survey and Land Use Planning, Nagpur, India.
Soil Survey Staff. (2014). Keys to Soil Taxonomy (12th ed.). U.S. Department of Agriculture, Natural Resources Conservation Service.
Stoops, G., & Schaefer, C. E. (2018). Pedoplasmation: Formation of Soil Material. In G. Stoops, V. Marcelino, & F. Mees (Eds.), Interpretation of Micromorphological Features of Soils and Regoliths (pp. 59–71). Elsevier.
Subramanian, K. S., & Muraleedharan, M. P. (1985). Origin of the Palghat Gap in South India-A Synthesis. Geological Society of India, 26(1), 28-37. https://doi.org/10.17491/jgsi/1985/260104
Varghese, T., & Byju, G. (1993). Laterite Soils (Technical Monograph No. 1). State Committee on Science, Technology and Environment, Government of Kerala, Kerala, India.
Verstappen, H. T. (1983). Applied geomorphology: Geomorphological Surveys for Environmental Development. Amsterdam: Elsevier.
Tait, J. M., Violante, A., & Violante, P. (1983). Co-crystallization of Gibbsite and Bayerite with Nordstrandite. Clay Minerals, 18(1), 95-99. https://doi.org/10.1180/claymin.1983.018.1.09
Tazaki, K. A. Z. U. E. (1976). Scanning Electron Microscopic Study of Formation of Gibbsite from Plagioclase. Institute for Thermal Spring Research, 45, 11-24.
Van der Merwe, C. R. & H. W. Weber. (1963). The clay minerals of South African soils developed from granite under different climatic conditions. South African Journal of Agricultural Science, 6(3), 411-454.
Velmurugan, A., Swarnam, T. P., Ambast, S. K., & Kumar, N. (2016). Managing Waterlogging and Soil Salinity with A Permanent Raised Bed and Furrow System in Coastal Lowlands of Humid Tropics. Agricultural Water Management, 168, 56–67. https://doi.org/10.1016/j.agwat.2016.01.020
Wang, C., Ross, G. J., & Rees, H. W. (1981). Characteristics of Residual and Colluvial Soils Developed on Granite and of The Associated Pre-Wisconsin Landforms in North-Central New Brunswick. Canadian Journal of Earth Sciences, 18(3), 487-494. https://doi.org/10.1139/e81-042
Wang, Q., Wang, W., He, X., Zheng, Q., Wang, H., Wu, Y., & Zhong, Z. (2017). Changes in Soil Properties, X-ray-mineral Diffractions and Infrared-Functional Groups in Bulk Soil and Fractions Following Afforestation of Farmland, Northeast China. Scientific Reports, 7(1), 12829. https://doi.org/10.1038/s41598-017-12809-2
Wang, X., Zhang, M., Zhang, W., Wang, J., Zhou, Y., Song, X., Li, T., Li, X., Liu, H., & Zhao, L. (2012). Occurrence and Origins of Minerals in Mixed-Layer Illite/Smectite-Rich Coals of the Late Permian Age from the Changxing Mine, Eastern Yunnan, China. International Journal of Coal Geology, 102, 26-34. https://doi.org/10.1016/j.coal.2012.07.010
Wilson, M. J. (1999). The Origin and Formation of Clay Minerals in Soils: Past, Present and Future Perspectives. Clay Minerals, 34(1), 7–25. https://doi.org/10.1180/000985599545957
Zhou, X., Liu, D., Bu, H., Deng, L., Liu, H., Yuan, P., Du, P., & Song, H. (2018). XRD-Based Quantitative Analysis of Clay Minerals Using Reference Intensity Ratios, Mineral Intensity Factors, Rietveld, and Full Pattern Summation Methods: A Critical Review. Solid Earth Sciences, 3(1), 16-29. https://doi.org/10.1016/j.sesci.2017.12.002
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2025 Jincy Peedamparammal, Pankajakshan Pangunny, Ramachandran Chandran, Jeena Beena Sajikumar, Sathish Chothodi , Dhanya Vijayan, Richard Scaria

This work is licensed under a Creative Commons Attribution 4.0 International License.