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Abstract 
 
The Urban Heat Island (UHI) phenomenon is one of the most significant 

environmental impacts resulting from land cover changes in urban areas. This 

study aims to analyze the relationship between land cover change and the UHI 

phenomenon in South Jakarta through the use of remote sensing and 

Geographic Information System (GIS) technologies. The data used comprise 

Landsat-8 OLI/TIRS from 2015 to 2018 to generate NDVI, NDWI, NDBI, Land 

Cover, and Land Surface Temperature (LST) indices. Pearson correlation test 

was also conducted to determine the variables that most influence the UHI 

phenomenon. The land cover changes, particularly the expansion of built-up 

areas and the reduction of vegetation—directly contribute to an increase in 

surface temperature. The correlation analysis reveals that NDBI consistently 

exerts the strongest influence on UHI (0.55), followed by NDWI (0.21) and 

NDVI (0.18). This research underscores the critical importance of land-use 

regulation as a strategic approach to mitigating UHI in urban environments.   
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Abstrak 
 
Fenomena Urban Heat Island (UHI) merupakan salah satu dampak lingkungan 

yang signifikan akibat perubahan tutupan lahan di kawasan perkotaan. 

Penelitian ini bertujuan untuk menganalisis hubungan antara perubahan 

tutupan lahan dengan fenomena UHI di Jakarta Selatan melalui penerapan 

teknologi penginderaan jauh dan Sistem Informasi Geografis (SIG). Data yang 

digunakan meliputi citra satelit Landsat-8 OLI/TIRS tahun 2015 hingga 2018 

untuk menghasilkan indeks NDVI, NDWI, NDBI, Land cover, dan Land Surface 

Temperature (LST). Uji korelasi Pearson juga dilakukan untuk menentukan 

variabel yang paling berpengaruh terhadap fenomena UHI. Perubahan tutupan 

lahan, terutama peningkatan area terbangun dan penurunan vegetasi, 

berkontribusi langsung terhadap peningkatan suhu permukaan. Uji korelasi 

menunjukkan bahwa NDBI merupakan variabel yang paling berpengaruh 

secara konsisten terhadap UHI (0,55), kemudian NDWI (0,21) dan NDVI (0,18). 

Penelitian ini menegaskan pentingnya pengendalian perubahan tata guna lahan 

sebagai strategi mitigasi UHI di kawasan perkotaan.  
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INTRODUCTION  
The Urban Heat Island (UHI) 

phenomenon refers to the condition in which 

urban areas exhibit significantly higher surface 

and air temperatures compared to their 

surrounding rural regions (Deilami et al., 2018).  

Urban heat island is primarily a manifestation of 

increased surface temperatures driven by 

urbanization activities, particularly land cover 

changes involving the conversion of vegetated 

areas into built-up land. The distribution of heat 

in urban environments is spatially heteroge-

neous and is strongly influenced by factors such 

as building density, vegetation cover, the 

presence of water bodies, and surface 

characteristics (Weng, 2001). The rise in 

temperature associated with UHI not only 

compromises urban thermal comfort but also 

poses negative impacts on environmental 

quality and public health (Imhoff et al., 2010).  

The rapid rate of urbanization in major 

cities, including Jakarta, has led to a significant 

increase in physical development and 

anthropogenic activities, which in turn have 

affected environmental temperatures. As one of 

the most dynamically developing administrative 

regions, South Jakarta has experienced sub-

stantial growth in the residential, industrial, and 

service sectors, accompanied by a decline in the 

extent of green open spaces (GOS). According 

to data from Statistics Indonesia (BPS) for 

Special Capital Region Jakarta, the population 

of South Jakarta reached approximately 2.36 

million in 2024. This figure reflects a steady 

upward trend since 2019, with a compound 

annual growth rate of approx-imately 0.082% 

over the past five years. The increase in 

population is directly proportional to the 

growing demand for land, which has triggered a 

large-scale conversion of vegetated areas into 

built-up land (Danniswari et al., 2020). 

Land cover conversion is a primary driver 

of the UHI phenomenon. Previous studies have 

demonstrated that changes in land cover, 

particularly the transformation of vegetated 

areas into residential or industrial zone have a 

direct impact on increasing surface temperatures 

(Zhou et al., 2016). Human activities in urban 

areas, especially in zones characterized by high 

building density and a lack of GOS, contribute 

to anthropogenic heat emissions that exacerbate 

the effects of UHI (Santamouris, 2015). 

Although the UHI phenomenon in South Jakarta 

is notably significant, an analysis using the 

Temperature and Humidity Index (THI) 

indicates that, with a THI value of 9.7% the 

region still maintains a relatively higher level of 

thermal comfort compared to other areas in the 

Special Capital Region of Jakarta (Wati & 

Fatkhuroyan, 2017). 

Given the intricate interactions among 

land conversion, building density, vegetation 

cover, and water bodies, an analytical approach 

is required to comprehensively depict the UHI 

phenomenon in South Jakarta. Conventional 

field-based monitoring methods often face 

spatial and temporal limitations, making them 

less effective in representing the dynamics of 

land-use change and its thermal implications. 

Therefore, the application of remote sensing and 

satellite imagery-based mapping offers a more 

efficient alternative for identifying land cover 

changes and their relationship with surface 

temperature variations in urban environments.  

The application of remote sensing and 

Geographic Information System (GIS) 

technologies facilitates the mapping and spatial 

analysis of the UHI phenomenon. The primary 

indicators employed in this study are Land 

Surface Temperature (LST), Normalized 

Difference Vegetation Index (NDVI), 

Normalized Difference Water Index (NDWI), 

and Normalized Difference Built-Up Index 

(NDBI). In the analysis of UHI, LST serves as a 

direct indicator of surface temperature, NDVI 

evaluates the contribution of vegetation in 

mitigating heat through evapotranspiration, 

NDWI measures moisture availability that 

influences thermal stability, and NDBI reflects 

the density of built-up areas, which is strongly 

correlated with anthropogenic heat 

accumulation. These four indicators can be 

extracted from satellite imagery, including 

Landsat, Sentinel, and MODIS data (Weng et al., 

2004), which have been utilized since 1972 and 

have progressively advanced with innovations 

in image classification techniques, radiometric 

correction, and multitemporal integration 

(Schwarz et al., 2011). These methods enable 

spatial and temporal monitoring of temperature 

and land cover changes with high accuracy and 

improved efficiency.  

The study of the UHI phenomenon in 

South Jakarta is highly relevant, as this area is 

experiencing rapid physical growth and holds a 

strategic role as a center of residential, economic, 

and public service activities in Special Capital 

Region of Jakarta. The environmental pressures 



Whidayanti et al. (2025) 

Journal of Geographical Sciences and Education  157 
 

generated in this region differ significantly from 

those in other areas, thereby necessitating a 

more detailed understanding of UHI dynamics 

within this specific urban context. 

In line with the dynamics of urban 

development and the high intensity of the UHI 

phenomenon in South Jakarta, this study aims to 

analyze land cover changes and their 

relationship with UHI phenomenon through the 

utilization of LST and associated indices (NDVI, 

NDWI, NDBI) using remote sensing technology. 

The results of this research are expected to 

contribute to the formulation of spatially based 

UHI mitigation strategies, thereby supporting 

adaptive and sustainable urban spatial planning.  

 

METHOD  
This study was conducted in the 

Administrative City of South Jakarta, one of the 

municipalities within the Special Capital Region 

of Jakarta, Indonesia (Figure 1). Geographically, 

South Jakarta is located between 106°22′42″ - 

106°58′18″E and 5°19′12″S, encompassing an 

area of approximately 145.37 km2, which 

accounts for about 22.41% of the total area of 

Special Capital Region Jakarta Province. This 

area holds a strategic role in the urban structure 

of Jakarta as it serves as a link between the 

capital’s economic activity centers and the 

greater Greater Jakarta metropolitan 

agglomeration. This strategic position is further 

supported by the development of transportation 

infrastructure, such as arterial roads, toll roads, 

and mass rapid transit/bus rapid transit systems, 

which facilitate such connectivity (Winarso et 

al., 2015).  

Physiographically, South Jakarta is 

classified as a lowland area with an average 

elevation of approximately 26.2 m.a.s.l and a 

slope gradient of <0.25%. However, the 

southern part of this region features undulating 

topography, particularly in areas further away 

from the flood control canals  (Danniswari et al., 

2020). South Jakarta is one of the most densely 

populated urban areas, predominantly composed 

of residential zones interspersed with urban-

scale commercial centers. These characteristics 

make the area highly relevant for spatial studies 

on land cover and the UHI phenomenon, as it 

integrates socio-economic factors, spatial 

planning, and intensive land use dynamics 

(Zhou et al., 2014).  

 

 

Figure 1.  The Map Research Area of South Jakarta
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The variable used this study include the 

NDVI, NDWI, NDBI, land cover, and LST. The 

NDVI, NDWI, NDBI, land cover, and LST data 

were derived from the processing of Landsat 8 

OLI/TIRS imagery for the years 2015, 2016, 

2017, and 2018 using ArcGIS 10.8. This study 

employed the Pearson Product-Moment 

statistical test to analyze the correlation between 

variables. The test was used to quantitatively 

measure the degree of correlation between two 

variables on an interval scale. The classification 

of Pearson’s correlation coefficient (r) values is 

presented in Table 1.

 
Table 1. Pearson’s correlation coefficient classification 

Coefficient Interval Degree of Correlation 
0.80 – 1.00 Very strong 

0.60 – 0.79 Strong 

0.40 – 0.59 Moderate 

0.20 – 0.39 Weak 

0.00 – 0.19 Very weak 

Source: Mukaka, 2012. 

Data Processing 
Normalized Difference Vegetation Index 

Vegetation index processing in this study 

employed the NDVI, which compares the ratio 

between band 4 (Near-Infrared/NIR) and band 3 

(Red) (Whidayanti et al., 2021). The wave-

lengths of band 4 (0.76-0.90 μm) and band 3 

(0.63-0.69 μm) exhibit significant reflectance 

contrast between vegetation and bare soil 

surface, making NDVI effective in detecting 

vegetation density levels (Eastman, 1997; 

USGS, 2023). The Equation 1 used to calculate 

NDVI is as follows. 

 

𝑁𝐷𝑉𝐼 =  
(𝑁𝐼𝑅 − 𝑅𝑒𝑑)

(𝑁𝐼𝑅 + 𝑅𝑒𝑑)
 (1) 

 
where 𝑁𝐼𝑅  represents the reflectance of near-

infrared light, and 𝑅𝑒𝑑  represents the 

reflectance of red light. Subsequently, the 

calculated index values were classified into 

vegetation density classes (Table 2).

 
Table 2. Classification of NDVI Values Based on Vegetation Density 

NDVI Values (μm) Density Classification 
0.006 – 0.328 Rare 

0.335 – 0.427 Medium 

0.434 – 0.750 Dense 

Source: Department of Forestry, 2005. 

Normalized Difference Water Index 
The NDWI is calculated based on the 

reflectance ratio between the Near-Infrared 

(NIR) and Short-Wave Infrared (SWIR) bands 

of Landsat 8 OLI/TIRS satellite imagery (Gao, 

1996). The use of NIR (0.86 μm) and SWIR 

(1.24 μm) bands is effective in mapping the 

presence and extent of water bodies due to the 

distinct reflectance contrast between water 

surfaces and other land cover types. Moreover, 

the NDWI approach facilitates spatio-temporal 

analysis by accurately detecting changes in 

water bodies using Landsat 8 OLI/TIRS 

imagery (Santecchia et al., 2023). The Equation 

2 used to calculate NDWI is as follows. 

 

𝑁𝐷𝑊𝐼 =  
(𝑁𝐼𝑅 − 𝑆𝑊𝐼𝑅)

(𝑁𝐼𝑅 + 𝑆𝑊𝐼𝑅)
 (2) 

 

where 𝑁𝐼𝑅  represents the reflectance of near-

infrared light, and 𝑆𝑊𝐼𝑅 represents the 

reflectance of shortwave infrared light. Sub-

sequently, the calculated index values at each 

point were classified into moisture level 

categories (Table 3). 

 
Normalized Difference Built-Up Index 

The NDBI is calculated based on the 

reflectance ratio between the Short-Wave 

Infrared (SWIR) band and the Near-Infrared 

(NIR) band from Landsat 8 OLI/TIRS satellite 

imagery. The wavelength range of the SWIR 

band (1.55 – 1.75 μm) and the NIR band (0.76 – 

0.90 μm) enables the automated extraction of 

built-up areas from Landsat data. The index 

yields values ranging from -1 to +1, which 

indicate the density of built-ip surfaces (Zha et 

al., 2003).  
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Table 3. Classification of NDWI Values Based on Moisture Levels 
NDWI Values (μm) Level of Moisture 

-0.43 – 0.1 Absent water 

0.1 – 0.17 Low 

0.17 – 0.27 Moderately low 

0.27 – 0.37 Moderate  

0.37 – 0.47 Moderately high 

0.47 – 1.0 High  

Source: Ji et al., 2009. 

𝑁𝐷𝐵𝐼 =  
(𝑆𝑊𝐼𝑅 − 𝑁𝐼𝑅)

(𝑆𝑊𝐼𝑅 + 𝑁𝐼𝑅)
 (3) 

 

where 𝑆𝑊𝐼𝑅 represents the reflectance of 

shortwave infrared light, and 𝑁𝐼𝑅 represents the 

reflectance of near-infrared light. Subsequently, 

the calculated index values at each point were 

classified into categories of built-up density 

levels (Table 4).

 
Table 4. Classificatioin of NDBI Values According to Building Density Levels 

NDBI Values (μm) Building Density 
-1 - 0 Non-building 

0 – 0.1 Rare 

0.1 – 0.2 Medium 

> 0.2 Dense 

Source: Zha et al., 2003. 

Land Cover 
In this study, land cover analysis was 

conducted using supervised classification, 

which groups satellite image pixels based on 

spectral similarity in an iterative and automated 

manner. The method begins with the selection of 

training pixels for each land cover category. 

These pixels are then analyzed and identified 

based on the mean spectral distance and 

standard deviation of the clusters until 

convergence is achieved. This approach enables 

accurate and efficient multispectral 

classification for land cover mapping using 

Landsat 8 OLI/TIRS imagery (Phiri & 

Morgenroth, 2017).  

 

Land Surface Temperature 
The processing of LST data in this study 

was performed through several steps. First, the 

Digital Number ( DN ) values were converted 

into Spectral Radiance ( 𝐿𝜆 ) following the 

approach using the the Equation 4 (Chander et 

al., 2009). 

 

𝐿𝜆 = 0.0370588 ×  DN + 3.2 (4) 

 

where 𝐿𝜆  is the spectral radiance ( 𝑊 ∙ 𝑚−2 ∙
𝑠𝑟−1 ∙ 𝜇𝑚−1), and DN is the digital number of 

the thermal band. 

The next step was converting Spectral 

Radiance to Brightness Temperature (Tb)using 

the radiometric calibration constants, according 

to Equation 5 (Chander et al., 2009). 

 

Tb =
K2

𝐼𝑛(
𝐾1
𝐿λ

+ 1)
 (5) 

 

where Tb is the brightness temperature in 

Kelvin,  K1 and K2  are calibration constants 

provided in the Landsat matadata, and 𝐿λ is the 

spectral radiance. 

Finally, the Brightness Temperature was 

converted to LST using the method proposed by 

Equation 6 (Li et al., 2013). 

 

LST =
Tb

[1 + (
λTb

𝛼 ) 𝐼𝑛 𝜀
 (6) 

 

where LST is the land surface temperature in 

Kelvin, λ is the effective wavelength of emitted 

radiance (for Landsat thermal bands), 𝛼 is a 

constant (equal to ℎ ∙ 𝑐/𝜎, where ℎ is Planck's 

constant, 𝑐  is the speed of light, and 𝜎 is 

Boltzmann’s constant), and 𝜀 is the surface 

emissivity. 
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RESULT AND DISCUSSION 
 

Normalized Difference Vegetation Index 
The processing of NDVI data produced a 

map that illustrates vegetation density in South 

Jakarta from a spatial and temporal perspective 

(Figure 2). The NDVI map highlights the 

geographic variation of vegetation density 

across the region. Areas with high NDVI values 

(approaching +1) are associated with densely 

vegetated zones, such as urban parks or GOS, 

whereas highly built-up areas exhibit lower 

NDVI values (close to zero or negative).  

The NDVI data were processed for four 

periods to facilitate a temporal analysis of 

vegetation cover change. The resulting maps 

clearly represent vegetation cover dynamics, 

allowing for year-to-year comparisons to assess 

the extent of land-use conversion (Kumar & 

Corbett, 2019).   
 

  

a b 

  

c d 
Figure 2. The Map of NDVI in a) 2015, b) 2016, c) 2017, and d) 2018
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Based on the visualization of the NDVI 

map (Figure 2), the spatial distribution of 

vegetation density in South Jakarta 

demonstrates considerable variation from year 

to year. The green areas on the map represent 

regions with high vegetation cover, while red 

areas indicate non-vegetated or built-up land. 

Temporal analysis of NDVI values from 2015 to 

2018 indicates fluctuations that reflect the 

dynamics of land conversion from vegetated to 

built-up areas. In 2015, the highest vegetation 

index was recorded at 0.50, which falls under the 

dense vegetation density category. However, in 

2017, there was a significant decline in the 

vegetation index, with the highest value 

reaching only 0.30, categorized as rare. This 

decline in 2017 indicates a degradation of 

vegetation cover degradation due to urban 

development and the expansion of built-up or 

residential areas. 

The findings of this study are consistent 

with those of Rachman et al. (2024), vegetation 

cover in Jakarta underwent a significant and 

continuous decline, primarily driven by the 

expansion of built-up areas. During the 2015-

2020 period, the increase in built-up land was 

the most pronounced, whereas vegetation and 

water bodies experienced the highest levels of 

loss. The reduction in vegetation across Jakarta, 

including South Jakarta, was largely attributed 

to rapid population growth and the escalating 

demand for residential areas, with green spaces 

serving as the primary source of land conversion 

into built-up areas during this time.  

Although the NDVI value in 2018 

increased to 0.46, which falls into the good 

category, this condition likely reflects limited 

greening efforts, such as the development of 

small-scale GOS or localized vegetation 

planting. However, the long-term trend in South 

Jakarta, as demonstrated by Rachman et al. 

(2024), consistently indicates a decline in 

vegetation cover due to expansion of built-up 

areas. Therefore, the increase in NDVI in 2018 

should be cautiously interpreted as a temporal 

fluctuation rather than evidence of sustainable 

vegetation recovery. 

Furthermore, the highest NDVI value was 

still recorded in 2015, indicating that within the 

context of the correlation between NDVI and the 

UHI phenomenon, 2015 potentially experienced 

a lower UHI effect due to a high vegetation 

density of vegetation functioning as a surface 

temperature reducer (Voogt & Oke, 2003). 

These NDVI results are consistent with previous 

studies which stated that high NDVI values can 

reduce UHI intensity through the comparative 

vegetation effect (Furusawa et al., 2023). 

Therefore, NDVI fluctuations not only represent 

ecological changes but are also directly 

correlated with surface temperature dynamics, 

which constitute a key indicator in UHI studies.  
 

Normalized Difference Water Index 
The processing results of the NDWI in 

South Jakarta area provide a spatial and 

temporal representation of surface moisture 

distribution, which is directly related to the 

presence of water bodies and land humidity. In 

this study, NDWI maps are categorized into four 

periods: 2015, 2016, 2017, and 2018. Each map 

illustrates variations in surface moisture index 

that reflect the dynamics of water body 

availability and wetland areas over time. 

High NDWI values represent the 

presence of water bodies or areas with high 

surface moisture, whereas low values indicate 

dry areas. Spatial and temporal analysis of 

NDWI is conducted because surface moisture 

index plays a role in influencing the thermal 

dynamics of urban areas, particularly in 

amplifying the intensity of the UHI 

phenomenon through increased surface 

temperatures. The NDWI maps for the South 

Jakarta area across the four periods are 

presented in Figure 3. 

Based on visual interpretation of the 

NDWI maps (Figure 3), the distribution of 

surface moisture in South Jakarta exhibits 

temporal dynamics, as indicated by the gradient 

from blue (high values) to red (low values). In 

2025, the highest NDWI value was recorded at 

0.18, which falls under the moderately low 

category. In 2016, only a marginal decimal 

difference was observed, indicating a relatively 

consistent level of surface moisture during the 

first two years of observation. However, in 2017, 

the NDWI value dropped drastically to 0.07, 

classified as very low, suggesting an absence of 

surface wetness. This indicates a significant 

degradation of surface moisture in 2017. In 2018, 

the NDWI value rose again to 0.15, although it 

remained in the low category. The overall low 

NDWI values are closely associated with the 

limited presence of water bodies in South 

Jakarta, such as small and unevenly distributed 

lakes.  Previous studies have emphasized that 

the  availability  and spatial distribution of water 
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a b 

  

c d 
Figure 3. The Map of NDWI in a) 2015, b) 2016, c) 2017, and d) 2018 

 
bodies are critical factors in determining surface 

moisture variability in urban areas (Gao, 1996). 

Other research further indicates that the 

presence of small and fragmented water bodies 

in highly urbanized regions often contributes to 

lower NDWI values (Chen et al., 2020). 

 
Normalized Difference Built-Up Index 

The processing of NDBI data from 2015 

to 2018 produced maps (Figure 4) that illustrate 

building density levels based on five 

classification categories. Higher NDBI values 

reflect greater urban development intensity. 

This serves as an indicator (Zha et al., 2003). 

Based on the visualization of the NDBI 

map (Figure 4), built-up areas are shown to 

dominate the South Jakarta region. This is 

indicated by the consistently high index values 

observed from 2015 to 2018. The color gradient 

from red (high building density) to blue (non-

built-up areas), reflects the spatial distribution of 

development intensity. The highest NDBI 

values were recorded in 2015 and 2016, both 

reaching  0.23, indicating high building density. 
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a b 

  

c d 
Figure 4. The Map of NDBI in a) 2015, b) 2016, c) 2017, and d) 2018 

 
In 2017, the value declined to 0.18, before 

increasing sharply in 2018 to 0.55. These 

fluctuations suggest a dynamic and rapid 

physical expansion of the area, particularly in 

the residential and infrastructure sectors. This 

directly contributes to the intensification of the 

UHI phenomenon through increased heat 

emissions from built-up surfaces. Accordingly, 

the findings of this study align with prior 

research, which has demonstrated that the 

spatial distribution of built-up areas plays a 

critical role in intensifying the UHI 

phenomenon in metropolitan environments 

(Weng, 2001). 

 
Land Cover 

The result of land cover data processing 

using the Supervised Classification method 

from 2015 to 2018 produced maps that represent 

the spatial distribution of various land cover 

categories in South Jakarta (Figure 5). Based on 

the data analysis, land cover in South Jakarta 

was classified into four categories: built-up land 

(orange), vegetation (green), open land (brown), 
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a b 

  

c d 
Figure 5.  The Map of Land Cover in a) 2015, b) 2016, c) 2017, and d) 2018 

 
and water bodies (blue). Each land cover 

category contributes differently to the intensity 

of the UHI phenomenon. For instance, built-up 

areas tend to contribute significantly to 

anthropogenic heat emissions, while vegetation 

and water bodies play a role in reducing surface 

temperatures and mitigating the UHI effect. 

The generated land cover maps not only 

provide spatial information regarding the 

distribution of land cover categories but also 

serve as a foundation for integrated analyses 

with other indices such as NDVI and NDBI 

(Figure 5). In the context of urban thermal 

studies, land cover acts as a determining 

variable influencing the intensity of the UHI 

phenomenon, depending on the proportion and 

spatial distribution of each category. The spatial 

visualizations from these maps form the basis 

for examining the dynamics of land cover 

change and its temporal impact on the UHI 

phenomenon in South Jakarta. 
 

Land Surface Temperature  
The processed LST data are visualized in 

the form of maps (Figure 6), which display a 

gradient ranging from red to green. These maps 
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a b 

  

c d 
Figure 6. The Map of LST in a) 2015, b) 2016, c) 2017, and d) 2018 

 
represent the spatial distribution of surface 

temperatures in the South Jakarta area. Red 

areas indicate zones with higher surface 

temperatures, while green areas reflect 

relatively lower temperatures. The LST 

mapping in this study was conducted temporally 

across four periods, allowing for the analysis of 

surface temperature changes over time. 

The LST maps serves as a primary 

component in identifying the UHI phenomenon 

(Figure 6). This is because the map provides a 

concrete depiction of LST distribution that can 

be correlated with other variables such as NDVI, 

NDWI, NDBI, and land cover. This analysis is 

based on the principle that high surface 

temperatures generally show a positive show a 

positive correlation with the dominance of built-

up areas and the limited presence of vegetation 

and water bodies (Weng et al., 2004). Thus, the 

LST map functions not only as a visual 

representation of surface temperatures but also 

as a fundamental basis for interpreting the 

spatial and temporal intensity and distribution of 

UHI in South Jakarta.  
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Assessing UHI Intensity in South Jakarta 
Analysis of LST from 2015 to 2018 

reveals that the UHI phenomenon in South 

Jakarta is dynamic and spatially uneven. The 

LST maps (Figure 6) show that areas with high 

surface temperatures, represented by red shades 

are predominantly located in built-up regions, 

particularly in the NDBI analysis, which 

recorded the highest index value in 2018 (0.55), 

indicating the dominance of built-up land cover 

and the limited presence of vegetation during 

that period. 

In 2017, the spatial distribution of high 

surface temperatures in South Jakarta appeared 

the most uneven compared to other years. This 

disparity is likely associated with low surface 

moisture, as indicated by the lowest NDWI 

value recorded in 2017 (0.07). This value 

suggest minimal presence of water bodies and 

surface humidity, which in turn exacerbated 

local heating (Wu, et al., 2019). Conversely, in 

2015, surface temperature conditions were 

relatively stable, consistent with the highest 

NDVI value (0.50), indicating a significant 

presence of vegetation functioning as a heat 

absorber (Santecchia et al., 2023). 

In general, the spatial distribution of high 

surface temperatures depicted in the LST map 

demonstrates a strong correlation between land 

cover and other variables such as NDVI, NDWI, 

and NDBI (Figure 6). Areas with higher 

vegetation cover, as identified by green zones, 

consistently exhibit lower surface temperatures. 

In contrast, built-up and densely constructed 

areas tend to concentrate heat accumulation and 

intensify the effects of the UHI phenomenon in 

South Jakarta.  
 

Dominant Variable on UHI Intensity 
The correlation between spatial variables 

and LST, representing the UHI phenomenon, 

was analyzed using the Pearson Correlation Test. 

This analysis aimed to assess the degree of 

correlation between the independent variables 

(NDVI, NDWI, NDBI) and LST as the 

dependent variable for each observation year. 

The tabulated results show variations in the 

correlation strength among variables from 2015 

to 2018, with interpretations based on Pearson’s 

coefficient classification (Table 5).  

In general, the NDBI variable exhibited 

the highest correlation values (0.55), 

consistently demonstrating a positive 

correlation with LST. This indicates that the 

expansion of built-up areas is closely associated 

with rising surface temperatures in urban 

environments. Meanwhile, both NDVI and 

NDWI tended to show negative correlations 

with LST, suggesting that areas with higher 

vegetation cover and surface moisture are 

capable of reducing UHI intensity (Weng et al., 

2004). Based on statistical analysis, NDBI 

emerged as the dominant factor driving the 

increase in UHI intensity in South Jakarta during 

the study period.  

The results of the yearly Pearson 

correlation test indicate that the influence of 

each variable on LST is dynamic. In 2015, 

NDVI showed the strongest negative correlation 

with LST, suggesting that vegetation played a 

significant role in lowering surface temperatures. 

This finding corresponds to the maximum 

NDVI value of 0.5 recorded in 2015, as 

illustrated in the NDVI map (Figure 2). In 

contrast, in 2016, NDBI exhibited the strongest 

positive correlation with LST, with an index 

value of 0.23, reflecting a high concentration of 

built-up areas. This trend highlights the 

dominance of anthropogenic heat resulting form 

intensified urban development. This finding is 

consistent with the study conducted by Weng 

(2001), which demonstrated that the increase in 

built-up area density is consistently associated 

with a rise in surface temperature and 

exacerbates the intensity of UHI in urban areas.  

In 2017, all three variables (NDVI, 

NDWI, and NDBI) showed significant 

correlations with LST, indicating that spatial 

influences on surface temperature were more 

complex during that year. In contrast, in 2018, 

NDBI once again emerged as the variable with 

the strongest correlation to LST. this finding 

aligns with the interpretation of land cover maps, 

which revealed a notable increase in built-up 

areas and a significant decrease in vegetation 

cover. The relatively lower correlation values of 

NDVI and NDWI with LST (-0.208 and 0.180, 

respectively) suggest that in 2018, the influence 

of surface moisture and vegetation density on 

surface temperature was more limited compared 

to the impact of urban built-up areas. This is 

because the density of built-up areas plays a 

dominant role in elevating surface temperatures 

in urban environments, whereas the 

contributions of vegetation and water bodies are 

relatively limited, particularly in highly 

urbanized regions (Weng, 2001). 
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Table 5.  Pearson Correlation Test Result for 2015 to 2018 
2015 LST NDWI NDVI NDBI 

2
0

1
5
 

LST 

Pearson Correlation 1 .029 -.067 .016 

Sig. (2-tailed)  .880 .723 .934 

N 30 30 30 30 

NDWI 

Pearson Correlation .029 1 -.988** .788** 

Sig. (2-tailed) .880  .000 .000 

N 30 30 30 30 

NDVI 

Pearson Correlation -.067 -.988** 1 -.853** 

Sig. (2-tailed) .732 .000  .000 

N 30 30 30 30 

NDBI 

Pearson Correlation .016 .788** -.853** 1 

Sig. (2-tailed) .934 .000 .000  

N 30 30 30 30 

2016 LST NDWI NDVI NDBI 

2
0

1
6
 

LST 

Pearson Correlation 1 .577** -.620** .705** 

Sig. (2-tailed)  .001 .000 .000 

N 30 30 30 30 

NDWI 

Pearson Correlation .577** 1 -.988** .788** 

Sig. (2-tailed) .001  .000 .000 

N 30 30 30 30 

NDVI 

Pearson Correlation -.620** -.988** 1 -.853** 

Sig. (2-tailed) .000 .000  .000 

N 30 30 30 30 

NDBI 

Pearson Correlation .705** .788** -.853** 1 

Sig. (2-tailed) .000 .000 .000  

N 30 30 30 30 

2017 LST NDWI NDVI NDBI 

2
0

1
7
 

LST 

Pearson Correlation 1 .630** -.672** .650** 

Sig. (2-tailed)  .000 .000 .000 

N 30 30 30 30 

NDWI 

Pearson Correlation .630** 1 -.988** .610** 

Sig. (2-tailed) .000  .000 .000 

N 30 30 30 30 

NDVI 

Pearson Correlation -.672** -.988** 1 -.680** 

Sig. (2-tailed) .000 .000  .000 

N 30 30 30 30 

NDBI 

Pearson Correlation .650** .610** -.680** 1 

Sig. (2-tailed) .000 .000 .000  

N 30 30 30 30 

2018 LST NDWI NDVI NDBI 

2
0

1
8
 

LST 

Pearson Correlation 1 -.208 .180 .473** 

Sig. (2-tailed)  .270 .340 .008 

N 30 30 30 30 

NDWI 

Pearson Correlation -.208 1 -.962** .268 

Sig. (2-tailed) .270  .000 153 

N 30 30 30 30 

NDVI 

Pearson Correlation .180 -.962** 1 -.461* 

Sig. (2-tailed) .340 .000  .010 

N 30 30 30 30 

NDBI 

Pearson Correlation .473** .268 -.461* 1 

Sig. (2-tailed) .008 153 .010  

N 30 30 30 30 

**. Correlation is significant at the 0.01 level (2-tailed). 
*. Correlation is significant at the 0.05 level (2-tailed). 

 
The correlation patterns observed from 

2015 to 2018 confirm that the influence of 

spatial variables on the intensity of the UHI 

phenomenon may vary each year, depending on 
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spatial conditions and land use dynamics. 

Nevertheless, NDVI and NDBI consistently 

emerge as the two most influential variables 

affecting surface temperature fluctuations in 

South Jakarta. This study is consistent with 

previous research demonstrating that the 

expansion of GOS significantly reduces LST, 

while the increase in built-up areas, as measured 

by the NDBI, shows a positive correlation with 

rising temperatures and the intensification of the 

UHI phenomenon in Jakarta (Rizki et al., 2024). 

 

CONCLUSION 
This study demonstrates that the UHI 

phenomenon in South Jakarta from 2015 to 

2018 was dynamic and significantly influenced 

by both spatial and temporal variations in land 

cover change. Utilizing remote sensing 

technology and GIS, the intensity and 

distribution of UHI were identified through the 

analysis of NDVI, NDWI, NDBI indices, and 

land cover maps. The processed data revealed 

that the spatial distribution and intensity of UHI 

varied annually. Person correlation analysis 

indicated that NDVI and NDBI were the 

dominant variables influencing the UHI 

phenomenon. These findings highlight the 

importance of monitoring built-up areas and 

vegetation cover in controlling surface 

temperature increases in urban regions. This 

study emphasizes the necessity of adaptive and 

spatially informed urban planning to mitigate 

the impacts of UHI in metropolitan areas. 
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